谷歌提出最新目标检测算法Context R

将本文分享至:

呃,看起来像清晨的浓雾,但浓雾后面是什么,真的看不清楚。其实这是一群牛羚在山上行走。 虽然人眼已经无能为力,但是谷歌最新的目标检测模型可以识别! 谷歌提出了一种目标检测
识别迷雾中的物体,谷歌提出最新目标检测算法Context R-CNN  

呃,看起来像清晨的浓雾,但浓雾后面是什么,真的看不清楚。其实这是一群牛羚在山上行走。

虽然人眼已经无能为力,但是谷歌最新的目标检测模型可以识别!

谷歌提出了一种目标检测的新方法Context R-CNN,简单地说,就是利用摄像头长时间的拍摄内容,推理出模糊画面里的目标。这种模型的性能优于单帧Faster R-CNN。

这种新的对象检测体系结构利用网络中每个摄像机在整个时间范围内的上下文线索,无需依赖大量摄像机的额外训练数据,即可提高对目标的识别能力。

识别迷雾中的物体,谷歌提出最新目标检测算法Context R-CNN  

而且谷歌表示此模型将作为TensorFlow目标检测API的一部分开放给用户,简化在数据集上训练和测试Context R-CNN模型的过程,另外相关代码也已经开源。

Context R-CNN它是对两阶段目标检测模型Faster R-CNN的改进,利用静态相机拍摄的图像内的高度相关性,以提高具有挑战性的数据的性能,并改进对新相机部署的通用性,无需额外的人工数据标记。

首先,Context R-CNN使用冻结的特征提取器来建立时间跨度较长的上下文存储库。由于这项技术最初用于野生动物的监测,时间跨度甚至能长达一个月。

接下来,在每个单帧图像中检测对象,R-CNN从内存库中聚合相关上下文,在具有挑战性的条件下(如前文的大雾中)检测对象。

在这个过程中,Context R-CNN使用注意力进行聚合,这对于静态监视摄像机中经常出现的稀疏和不规则采样率具有鲁棒性。

识别迷雾中的物体,谷歌提出最新目标检测算法Context R-CNN  

Context R-CNN从Faster R-CNN的第一阶段中获取建议的对象,并且对于每个对象,都使用基于相似性的注意力来确定内存库M中的每个特征与当前特征的相关性,并通过在内存库M上取相关性加权总和,并将其加回到原始目标特征上,来构造每个目标的上下文特征。

识别迷雾中的物体,谷歌提出最新目标检测算法Context R-CNN  

网友评论 >

世界芯片科技格局发

芯片 是当今工业时代的核心产业,机器人、智能控制、数控机床、智能终端等都需

我要提问

广告联系 | 报纸订阅 | 法律声明 | 网站地图 | 关于我们 | 友情链接 | 上海工商 | 举报中心

增值电信业务经营许可证 沪B2-20050348号 互联网视听节目服务(AVSP):沪备2014002 删稿联系邮箱:sheng6665588@gmail.com

版权所有 上海第一财经传媒有限公司

技术支持 上海第一财经数字媒体中心