电动车续航造假 是谁在欺骗你?

将本文分享至:

在各类电动车交流平台中,类似的对话屡见不鲜。这种状况像极了当年智能手机刚出来那会儿,论坛中充斥着关于 充满电能用多久 的话题,却罕有一致的意见。 拥有一辆车带来的最大改
在各类电动车交流平台中,类似的对话屡见不鲜。这种状况像极了当年智能手机刚出来那会儿,论坛中充斥着关于 充满电能用多久 的话题,却罕有一致的意见。

拥有一辆车带来的最大改变,就是活动半径的增加,只要你愿意,可以在任何时候踏上一场 说走就走的远行 ,即便你很少长途驾驶,但重点在于拥有自由选择的 权力 。这就是为什么尽管不少电动车的续航已经不输燃油车,但由于补能设施数量和补能速度与燃油车仍有差距,所以提速快、行驶安静、单踏板驾驶方便、用车成本低 这些电动车的优点,在 续航焦虑 问题面前似乎不堪一击。

通过车企的宣传也不难看出市场的 一致性 ,几乎所有电动车的广告和传播中,续航一定是作为最重要的数据摆在醒目的位置。如果没有这么做,不用多想,大概率是续航表现不尽人意。

不过对于电动车如此重要的参数,续航一直被诟病存在 虚标 现象,实际续航远低于厂商宣传的标称续航。例如有些电动车,标称续航200公里,实际续航仅有100公里左右,高速行驶的续航可能100公里都没有,甚至如果遇到冬天或者夏天需要开空调,可能就更低了。

那么问题来了,为何有的人能够跑出比标称续航更长的数据,难道他们真的都是托么?要想弄清楚这个问题,得从电动车续航受哪些因素影响,以及电动车的标称数据的来源说起。

是什么扼杀了续航

无论是燃油车还是电动车,简单来说,影响其续航的因素其实就两个,一是车载能源有多少,二是能源使用效率有多高。

相比燃油车而言,目前无论电动车搭载多少kW h(度)的电池包,都无法与一箱油媲美能源大小。一加仑汽油所蕴含的能量相当于33.705kW h电力(国际通用换算标准),也就是一升汽油相当于8.9kW h。一辆普通的燃油车油箱大小约为60升左右,换算成电力约为534kW h(大约是家庭平均月用电量的两倍),而目前市场上纯电动车搭载的电池包一般在30kW h到100kW h之间,对比之下,燃油车携带的能源大概是纯电动车的5~18倍之间。

一辆燃油车,续航平均在500公里左右,按理说电动车携带如此少的能量,其续航应该也就几十公里。但别忘了还有能源使用效率问题,也就能量守恒定律,燃油车的汽油能量要先经过发动机转换(平均33%,顶级热效率也就41%左右),随后经过一系列机械传动结构转换,最终呈现在续航上的效率大约只有22%左右(汽油20%,柴油25%,顶级30%多);而对于电动车而言,电力进入电机转换(转换效率可高达90%多,顶级98%),再进过传动系统转换,最终成现在续航的效率可超过80%多(顶级90%多)。

电动车续航造假 是谁在欺骗你? 能源使用效率其实就是电动车用车成本低的根本原因,也就是你为汽油花10块,仅有2块用于行驶,而电动车则有9块用于行驶。但也正是这个原因,使得电动车的续航非常 脆弱 。

燃油车就像是大土豪,钱多任性,例如在城市低速工况下,其效率更低,可能被浪费能量除了变成热能被排放掉之外,还可以用于带动发电机和空调压缩机进行能量转换,从而为车载电器提供电能和冷风,此外冬天时候,多余的热能被空调系统利用,送入车内取暖。所以即便燃油车开空调,无论冬天夏天,只要车辆不出现故障,续航影响程度都不会太夸张,因为这些能源恰恰来自于 被浪费 的部分,不用白不用。

而电动车由于电池包能量有限,且几乎没有 浪费 ,除了动能回收系统和热管理系统(比如将电机、电池包产生的热能利用)能够回收一些能量,其他每一分 钱 都要精打细算。尤其是在冬天时候,除了需要直接消耗电能供发热系统(多种技术手段,效率不同,热泵系统综合比较下是最优解,例如Model Y即采用的热泵系统,而非Model 3所用的PTC)提供暖风,还需要给电池包加热。

有得必有失,当电动车拥有极高能源使用效率的时候,对于车载能源总量就相对敏感许多。但这还只是从使用层面角度考虑,电池包本身能量总数也会受到一些因素影响。

电动车与燃油车不同,汽油存入油箱后只要不发生泄露,储存的能量总数基本不会变(蒸发泄露的忽略不计),所以燃油车长期使用续航下降,多是发生在能量转换阶段,但电动车就不太一样。由于电动车机械零部件较少且结构简单,长时期使用虽然也会有损耗,但其使用寿命和可靠性要远比内燃机动力系统要好的多,所以电动车长期使用续航下降,多是由于能量总数减少。

目前市面上纯电动车大多数都是由锂电池作为能量来源,主流锂电池大致可以分为两类:磷酸铁锂和三元锂电池,而三元锂电池又可以分为NCA(镍钴铝,特斯拉专用)和NCM(镍钴锰,行业主流),其他关于电池的科普请看笔者另两篇文章(马斯克:下一步我干啥,你猜,200年的电池进化史)。但不管使用的是哪种锂电池,就目前的电池技术而言都会受到多种因素影响其表现,例如生产阶段问题、不同配方特性、极端温度情况、充放电情况等。

影响电池表现可分为两类:临时性和永久性。

临时性主要指的是温度影响,低温时会导致电池内阻增加、锂离子镀膜现象等,导致可用容量下降,放电速率下降(性能)。举个形象的比喻,大量的锂离子就像是一群小朋友,天气过冷,导致大家活动意愿下降,甚至三无成群取暖,即便老师强迫要求出去活动,也会因为速度下降,导致教室大门发生拥堵,进而单位时间出门的小朋友数量减少。

但过高的温度影响可用容量不太一样,同样是一群小朋友,在过热的温度会使得它们躁动不安,极高的活动热情虽然看似速度增加了,但是不但没有加速出入大门的速度,反而失序导致整体效率下降,对总电量影响不大,但对性能有影响,并且可能会造成电池不可逆的损伤。

由此带来的影响是巨大的,相比正常25度温度时,当气温下降至零下20度,续航可下降35%左右,零下10度,续航下降25%左右,零度,续航下降15%左右。如果考虑到暖风空调,续航下降会再添加10~15%。

相比之下,温度上升对续航影响并不显著,当温度上升至35度时,续航才下降5%左右,本质上是因为需要给电池降温(所以电池包越大,耗电会多一些);而开了空调,下降将再提升10~15%左右。

(注:各个车型由于采用不同的电池和电池包技术,以及不同的温控系统,最终续航下降数据会有不同。比如AAA测试报告中:

零下7度开暖风的续航情况,2018款宝马i3续航下降46%,2018款雪佛兰Bolt续航下降47%,2018日产凌风下降32%,2017款Model S续航下降38%;零下7度不开暖风情况下,四款车续航下降分别为14%、10.4%、10.8%、11.1%。

35度时开空调,上述四款车续航分别下降21%、19.1%、12.2%、15%;35度不开空调,分别下降4%、2.1%、2.2%、6%)

(另:对比续航下降数据的分母,是标称续航,非实际续航)

其实过低和过高都会导致电池发生不可逆的损伤,这是由物理和化学特性决定的。所以车企会在电池包中加入温控系统,通过对电池包温度调节,一方面可以保证电池包充放电性能,另一方面避免不可逆的损伤,延长电池使用寿命。(所以无论是否使用空调,温控系统都会在温度过高或者过低时,服务于电池包)

关于不可逆损伤的具体技术细节就不展开来谈,简单来说,在受到除了温度之外诸多因素影响,电池会出现不同程度的衰减(容量下降为主,性能损耗相比较少)。更好理解一些,电池像是水杯,充满电就是倒满水,放电就是将水倒出来,在这个过程中, 水洒了 意味着可用电能减少(不太准确,但充电过程不是从外界拿来水资源,而是帮助你将倒出的水倒回来,所以水洒了就会导致水的总量减少), 杯子磕碰了 意味着能够存储的总量减少了,两种形式形式最终都会导致电池衰减。

虽然电池衰减是不可避免的,但远没有大家想象的那么夸张,电池寿命在设计时已经考虑到了上述所有的情况,并给出了电池设计寿命值。

电池寿命可分为循环寿命和日历寿命,意思是当电池容量衰减为80%原始设计容量时,即为寿命终止时间(EOL,End Of Life)。循环寿命指的是在指定外部环境下,从100%到0%电量,可以实现多少次充放电到达EOL,但循环寿命与平时大家理解的 充一次电 不同,如果平时放电深度(DOD,Depth Of Discharge)不是100%,而是50%(例如80%到30%,70%到20%),其循环寿命并非是直觉理解的变为两倍,而是成几何级上涨,如果DOD平均值在40%左右,其循环寿命最高可增长十几倍甚至更高。而日历寿命则指的是在长期不使用电池的情况下,在某一保留电量SOC(State Of Charge)标准时,电池在多久后会到达EOL。日历寿命取决于电池温度和SOC,较为理想的温度在20~35度区间,SOC保留在50%左右,其循环寿命可长达20年以上。不同的电池其循环寿命和日历寿命都有些不同,但最差的循环寿命也有接近1000次(假设某电动车200公里续航,循环寿命内也能保证20万公里后到达EOL),日历寿命超过10年,这也是为什么所有的车企给出的电池保修政策几乎都是 15万公里,8年 免费更换电池包。另外循环寿命和日历寿命会互相影响,所以车企在保修政策中加入了 两者条件触发任意一个为准 。

实际上,过冲、过放、温度影响等诸多问题都可以由BMS以及隐藏电量来解决,比如电动车宣称电池容量与实际电池容量其实是不同的,以Model 3长续航为例,实际电池容量为78kW h,可用容量为75kW h,在设计之初已经考虑到了实际使用可能发生的情况。但同时也意味着,车企对于该温控和BMS的技术积累,决定着其电池的寿命情况。比如在特斯拉车主长期统计数据中显示(包括最早一批的Model S/X),绝大多数用户在都在90%续航容量以上,甚至有行驶40万公里以后还保持在85%左右的用户,当然受诸多因素影响,也有个别用户遇到了严重衰减。此外影响续航的另一个重要原因,就是驾驶习惯问题。驾驶习惯影响续航其实对于燃油车也一样,只是人们对于电动车续航 过于敏感 ,从而严重放大了这个问题。这其中的原因笔者就不过多解释,稍微想一想就能明白为什么。综上所述,电动车续航受到非常多的因素影响,有客观原因,有使用者主观原因,使得不同车主给出的实际续航数值出现较大的差别。但问题在于,对于一辆新车,其续航受到上述因素影响甚微,理论上其实际续航应该接近于广告宣传的标称续航,然而现实情况却完全不同,很多车型在新车状态下,实际续航与标称续航相差甚远,甚至能打对折,这又是为什么?

善良 的出题人?

标称续航是有同一标准的,但这个标准大多 传承 于 汽车能耗测试 ,也就是平时常见的 百公里油耗 排放污染 等标准测试工况。目前全球采用的主流标准有NEDC(New European Driving Cycle,新欧洲驾驶循环)、EPA(Environmental Protection Agency,美国环境保护总署)、JC08(Janpanese Cycle,日本循环)、WLTP(Worldwide Harmonised Light Vehicles Test Procedure,欧洲提出的轻型车测试循环)。

标称续航的数据就是有关机构采用不同的测试标准,得出的实验数据。无论是燃油车油耗还是电动车续航,本质上测试数据都只是一个参考值,也就是 老师 统一出卷子,在保证绝对相同的测试条件下,对每个 学生 进行打分。毕竟实际使用情况各有不同,所以参考数据仅有一定参考价值,其目的是为了横向比较。哪怕 工信部油耗 与实际不符,但标称4.5升/百公里的车,使用喜欢相同情况下一定比6升/百公里的车要省油。

但关键点在于,燃油车哪怕油耗再高,由于加油站数量多和加速方便,车主大概率不会因此而产生焦虑,只不过是钱包焦虑罢了。所以虽然燃油车里程表大多也会显示 剩余里程 ,但几乎没有几个人会在意这个数值。

电动车就不同了,无论是车主还是吃瓜路人,都丝毫不放松的盯着屏幕上的剩余里程,预估什么时候需要充电,以及是否能够行驶到目的地,所以表显里程对于车主使用十分重要。表显续航精准与否和BMS(Battery Management System,电池管理系统)技术有关,不过就算是大家BMS技术一致,一些车企也不得不 造假 。

为什么这么说呢?你设想一下,某车型宣传标称续航xxx公里,当你试驾时候或者提车后,发现表显里程与标称续航相差甚远,你会怎么做?

所以本质上,标称续航需要分为两部分来看,一方面是车企的 诚实程度 ,另一方面测试标准是否接近现实使用环境。

去年理想汽车的创始人李想在年初发送的微博说: 看到国内不少有头有脸的汽车品牌,推广电动车的时候还在用60等速宣传自己的续航里程,甚至直接把这样的虚假续航里程数字贴在车屁股上(车型命名),真有点大跃进的感觉。 所谓的虚假续航,就是测试标准的不同,导致得出不同的实验数据,而在这些测试标准中,以续航结果排名为EPA

为了搞清楚这其中的区别,笔者不惜花钱买来了SAE J1643文档(Battery electric Vehicle Energy Consumption and Range Test Procedure,电动车能源消耗和续航测试标准,网络上难以找到具体的测试细节),EPA测试采用的是SAE提出的测试标准(Society of Automotive Engineers,美国机动车工程师学会),而其他几个标准信息可以从维基百科获得。

先从最差的说起,60等速工况,顾名思义就是车辆以60km/h的速度匀速行驶,直到车辆电池耗尽,得出的续航里程。从原理上讲,之所以这种测试得出的续航最不切实际,一方面因为日常驾驶环境完全不会按照这种模式,另一方面无论对于燃油车来说,还是电动车来说,这个速度巡航得效率都处于最佳工况区间。所以也就不难理解为何60等速工况续航

网友评论 >

电动车续航造假 是

在各类电动车交流平台中,类似的对话屡见不鲜。这种状况像极了当年智能手机刚

我要提问

广告联系 | 报纸订阅 | 法律声明 | 网站地图 | 关于我们 | 友情链接 | 上海工商 | 举报中心

增值电信业务经营许可证 沪B2-20050348号 互联网视听节目服务(AVSP):沪备2014002 删稿联系邮箱:sheng6665588@gmail.com

版权所有 上海第一财经传媒有限公司

技术支持 上海第一财经数字媒体中心